Topics in the November 2009 Exam Paper for CHEM1612

Click on the links for resources on each topic.

2009-N-2:

• Introduction to Chemical Energetics

2009-N-3:

- Solutions
- Gas Laws

2009-N-4:

Acids and Bases

2009-N-5:

• Chemical Equilibrium

2009-N-6:

- Introduction to Chemical Energetics
- Gas Laws
- Chemical Equilibrium

2009-N-7:

• Complexes

2009-N-8:

- Solubility
- Introduction to Chemical Energetics

2009-N-9:

• Chemical Kinetics

2009-N-10:

Radiochemistry

2009-N-11:

- Introduction to Colloids and Surface Chemistry
- Solubility

2009-N-12:

Chemical Equilibrium

2009-N-13:

• Complexes

2009-N-14:

- Introduction to Colloids and Surface Chemistry
- Chemical Kinetics

2009-N-15:

• Redox Reactions and Introduction to Electrochemistry

2009-N-16:

- Chemical Equilibrium
- Redox Reactions and Introduction to Electrochemistry
- Complexes

22/32(a)

The University of Sydney

CHEM1612 - CHEMISTRY 1B (PHARMACY)

SECOND SEMESTER EXAMINATION

CONFIDENTIAL

NOVEMBER 2009

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY	SID	
NAME	NUMBER	
OTHER	TABLE	
NAMES	NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 21 pages of examinable material.
- Complete the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new question of the short answer section begins with a ●.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.
- Pages 11 and 24 are for rough working only.

OFFICIAL USE ONLY

Multiple	e choice	section
		Marks
Pages	Max	Gained
2-7	20	
Short ar	nswer se	ection

	Marks			
Page	Max	Gaine	d	Marker
8	4			
9	6			
10	4			
12	3			
13	5			
14	4			
15	6			
16	6			
17	6			
18	8			
19	3			
20	6			
21	5			
22	5			
23	9			
Total	80			

 Nitroglycerine, C₃H₅(NO₃)₃, decomposes to form N₂, O₂, CO₂ and H₂O according to the following equation. 4C₃H₅(NO₃)₃(l) → 6N₂(g) + O₂(g) + 12CO₂(g) + 10H₂O(g) If 15.6 kJ of energy is evolved by the decomposition of 2.50 g of nitroglycerine at 1 atm and 25 °C, calculate the enthalpy change, ΔH°, for the decomposition of 1.00 mol of this compound under standard conditions. 	Mark 4
$4C_3H_5(NO_3)_3(l) \rightarrow 6N_2(g) + O_2(g) + 12CO_2(g) + 10H_2O(g)$ If 15.6 kJ of energy is evolved by the decomposition of 2.50 g of nitroglycerine at 1 atm and 25 °C, calculate the enthalpy change, ΔH° , for the decomposition of 1.00 mol of this compound under standard conditions.	
If 15.6 kJ of energy is evolved by the decomposition of 2.50 g of nitroglycerine at 1 atm and 25 °C, calculate the enthalpy change, ΔH° , for the decomposition of 1.00 mol of this compound under standard conditions.	
Answer:	_
Hence calculate the enthalpy of formation of nitroglycerine under standard conditions.	
Data: $\Delta_{\rm f} H^{\circ} (\rm kJ mol^{-1})$	
H ₂ O(g) -242	
CO ₂ (g) -394	
	_
Answer:	

•	Assuming ideal behaviour, calculate the r dissolved in 1.0 L of water at 37 °C to obt of 6.0 atm, the same as that of cell cytopla	nass of MgCl ₂ ·6H ₂ O that should be tain a solution with an osmotic pressure asm.	Marks 4
			-
		Answer:	
•	The average speed of a gaseous neon ator speed of a helium atom at the same temper	m at 300 K is 609 m s ^{-1} . What is the average erature?	2
		Answor	

•	Tris(hydroxymethyl)aminomethane is cor has a base ionisation constant of $1.26 \times 10^{\circ}$ solution of this compound?	nmonly used to make buffer solutions. It 0^{-6} . What is the pH of a 0.05 M aqueous	Marks 3
		Answer:	
•	The ionisation constant of water, K_w , at 3' neutral solution at 37 °C?	7 °C is 2.42×10^{-14} . What is the pH for a	1
		Answer:	

• Consider the following reaction. $H_2O(g) + Cl_2O(g) \implies 2HOCl(g) \qquad K_n = 0.090 \text{ at } 298 \text{ K}$	Marks 3
Calculate ΔG° (in J mol ⁻¹) for this reaction.	
	_
	_
$\Delta G^{\circ} =$	
Calculate ΔG (in J mol ⁻¹) at 25 °C when $p(H_2O) = 18$ mmHg, $p(Cl_2O) = 2.0$ mmHg and $p(HOCl) = 0.10$ mmHg.	
· · · · · · · · · · · · · · · · · · ·	
Answer:	

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

Explain the following terms or concepts.		Mark 3
a) Lewis acid		
b) 3 rd Law of Thermodynamics		_
5) 5 Eaw of Thermodynamics		
c) Brownian motion		
$\mathbf{A} = \mathbf{U}^{\circ} - 24.0 \mathrm{k} \mathrm{I} \mathrm{mal}^{-1} \mathrm{for} \mathrm{honzona} \mathrm{whi}$	ah has a bailing point of 90.1 °C. What is the	_
entropy change for the vaporisation of be	enzene in J K^{-1} mol ⁻¹ ?	2

	Marks 4
Answer	

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

• Will AgCl precipitate if solutions of 25.0 of 1×10^{-5} M AgNO ₃ are added to one an K_{sp} for AgCl = 1.8×10^{-10} at 25 °C.	mL of 2.0×10^{-5} M KCl and 75.0 mL nother? Show your reasoning.	Marks 2
• A mass of 1.250 g of benzoic acid (C ₇ H ₆ C calorimeter. If the heat capacity of the ca	Answer: D_2) underwent combustion in a bomb alorimeter was 10.134 kJ K ⁻¹ and the heat of	4
combustion of benzoic acid is –3226 kJ n during this reaction?	nol^{-1} , what is the change in internal energy	_
	Answer:	-
Calculate the temperature change that sho	buld have occurred in the apparatus.	
	Answer:	

_		
	• The disproportionation of hydrogen peroxide into oxygen and water has an enthalpy of reaction of -98.2 kJ mol ⁻¹ and an activation barrier of 75 kJ mol ⁻¹ . Iodide ions act as a catalyst for this reaction, with an activation barrier of 56 kJ mol ⁻¹ . The enzyme, catalase, is also a catalyst for this reaction, and this pathway has an activation barrier of 23 kJ mol ⁻¹ . Draw a labelled potential energy diagram for this process both without and with each of the catalysts.	Marks 6
L		
	Calculate the factor by which the reaction speeds up due to the presence of each of these two catalysts at a temperature of 37 °C. Assume that the pre-exponential Arrhenius factor remains constant.	
Γ		

•	A medical procedure requires 15.0 mg of ¹¹¹ In. What mass of isotope would be required to be able to use it exactly 4 days later? The half life of ¹¹¹ In is 2.80 days.	Marks 2
	Answer:	_
•	Write balanced nuclear equations for the following reactions.	3
	Positron decay of potassium-40.	
	Electron capture by gallium-67.	
	Alpha decay of dysprosium-151.	
•	Briefly explain the apparent contradiction between the following statements.	1
	"Alpha particles are easily stopped by the skin." "The alpha-emitter, radon, is thought to be a significant cause of cancer."	

• Give 2 examples of changes of conditions that might cause a colloidal dispersion to coagulate. In each case, explain why coagulation occurs.	Marks 4
• A saturated solution of lithium carbonate in pure water at 20 °C contains 1.33 g of solute per 100.0 mL of solution. Calculate the aqueous solubility product of lithium carbonate at this temperature.	4
$K_{\rm sp} =$	
When the temperature of the same solution is raised to 40 °C, the solubility is reduced to 1.17 g per 100.0 mL of solution. What conclusions can be drawn about the sign of the standard enthalpy of dissolution of lithium carbonate?	

• A mixture of NaCl (5.0 g) the concentrations of Ag ⁺ (has been established? K_{sp}	and AgNO ₃ (5.0 g) was added (aq), Cl ⁻ (aq) and Na ⁺ (aq) ions i (AgCl) = 1.8×10^{-10} .	to 1.0 L of water. What are n solution after equilibrium	Marks 3
[Ag ⁺ (aq)] =	[Cl ⁻ (aq)] =	[Na ⁺ (aq)] =	

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

Marks

2

• Explain how the self-assembly of phospholipids can be utilised in a drug delivery system.

• A proposed kinetic model for the reaction of NO(g) with Br₂(g) to form NOBr(g) is as follows.

Step 1 NO(g) + NO(g)
$$\stackrel{k_1}{\underbrace{k_{-1}}}$$
 N₂O₂(g)

Step 2
$$N_2O_2(g) + Br_2(g) \xrightarrow{k_2} 2NOBr(g)$$

If Step 2 is assumed to be very slow compared to the equilibrium of Step 1, derive the overall rate equation you would expect to see for this mechanism.

3

- The standard reduction potential of phosphorous acid to hypophosphorous acid is -0.499 V, with the following half-reaction: $H_3PO_3(aq) + 2H^+(aq) + 2e^- \rightarrow H_3PO_2(aq) + H_2O(l)$ What would the reduction potential be for this half reaction at a temperature of 25 °C in an aqueous solution with pH of 2.3 and concentrations of [H₃PO₃(aq)] = 0.37 M and [H₃PO₂(aq)] = 0.00025 M? Answer:
 - A number of bacteria can reduce the nitrate ion in the presence of sulfur. A simplified unbalanced redox reaction can be written as:

 $S(s) + NO_3(aq) \rightarrow SO_2(g) + NO(g)$

Balance this redox equation for acidic conditions.

2

2009-N-16

• What is the value of 2	The equilibrium constant for the following reaction at 298 K? $Fe^{3+}(aq) + 3Sn(s) \rightarrow 2Fe(s) + 3Sn^{2+}(aq)$	Mark 3						
Relevant electrode	potentials can be found on the data page.							
	Answer:	_						
Complete the following table.								
Formula	Systematic name							
[CrCl(NH ₃) ₅]Cl ₂								
	dibromidotetracarbonylplatinum(IV) nitrite							
K ₃ [CrF ₆]								
(NH ₄) ₃ [CuF ₅ (OH ₂)]		_						
• State two chemical the human body.	factors that contribute to the bioavailability of a heavy metal in	2						
 K₃[CrF₆] (NH₄)₃[CuF₅(OH₂)] State two chemical the human body. 	factors that contribute to the bioavailability of a heavy metal in							

CHEM1612 - CHEMISTRY 1B (PHARMACY)

DATA SHEET

Physical constants Avogadro constant, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$ Faraday constant, $F = 96485 \text{ C mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \text{ J s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \text{ m s}^{-1}$ Rydberg constant, $E_R = 2.18 \times 10^{-18} \text{ J}$ Boltzmann constant, $k_B = 1.381 \times 10^{-23} \text{ J K}^{-1}$ Permittivity of a vacuum, $\varepsilon_0 = 8.854 \times 10^{-12} \text{ C}^2 \text{ J}^{-1} \text{ m}^{-1}$ Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ $= 0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1}$ Charge of electron, $e = 1.602 \times 10^{-19} \text{ C}$ Mass of electron, $m_p = 1.6726 \times 10^{-27} \text{ kg}$ Mass of neutron, $m_n = 1.6749 \times 10^{-27} \text{ kg}$

Properties of matter Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors	
1 atm = 760 mmHg = 101.3 kPa	$1 \text{ Pa} = 1 \text{ N m}^{-2} = 1 \text{ kg m}^{-1} \text{ s}^{-2}$
0 °C = 273 K	$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$
$1 L = 10^{-3} m^3$	$1 \text{ Hz} = 1 \text{ s}^{-1}$
$1 \text{ Å} = 10^{-10} \text{ m}$	1 tonne = 10^3 kg
$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$	$1 \text{ W} = 1 \text{ J s}^{-1}$

Deci	mal fract	ions	Deci	mal multi	ples
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol
10^{-3}	milli	m	10^{3}	kilo	k
10^{-6}	micro	μ	10^{6}	mega	М
10^{-9}	nano	n	10 ⁹	giga	G
10^{-12}	pico	р	10^{12}	tera	Т

CHEM1612 - CHEMISTRY 1B (PHARMACY)

Standard Reduction Potentials, E°

Reaction	E° / V
$S_2O_8^{2-} + 2e^- \rightarrow 2SO_4^{2-}$	+2.01
$\operatorname{Co}^{3+}(\operatorname{aq}) + e^{-} \rightarrow \operatorname{Co}^{2+}(\operatorname{aq})$	+1.82
$Ce^{4+}(aq) + e^- \rightarrow Ce^{3+}(aq)$	+1.72
$MnO_4^{-}(aq) + 8H^{+}(aq) + 5e^{-} \rightarrow Mn^{2+}(aq) + 4H_2O$	+1.51
$\operatorname{Au}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Au}(s)$	+1.50
$Cl_2(g) + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2(g) + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$Br_2 + 2e^- \rightarrow 2Br^-(aq)$	+1.10
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+}(aq) + 2H_2O$	+0.96
$NO_3^{-}(aq) + 4H^+(aq) + 3e^- \rightarrow NO(g) + 2H_2O$	+0.96
$Pd^{2+}(aq) + 2e^- \rightarrow Pd(s)$	+0.92
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80
$\operatorname{Fe}^{3+}(\operatorname{aq}) + e^{-} \rightarrow \operatorname{Fe}^{2+}(\operatorname{aq})$	+0.77
$I_2(aq) + 2e^- \rightarrow 2I^-(aq)$	+0.62
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53
$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2\mathrm{H}^+(\mathrm{aq}) + 2\mathrm{e}^- \rightarrow \mathrm{H}_2(\mathrm{g})$	0 (by definition)
$Fe^{3+}(aq) + 3e^- \rightarrow Fe(s)$	-0.04
$Pb^{2+}(aq) + 2e^- \rightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.14
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.24
$\operatorname{Co}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Co}(s)$	-0.28
$Fe^{2+}(aq) + 2e^- \rightarrow Fe(s)$	-0.44
$\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Cr}(s)$	-0.74
$\operatorname{Zn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Zn}(s)$	-0.76
$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83
$\operatorname{Cr}^{2^+}(\operatorname{aq}) + 2e^- \rightarrow \operatorname{Cr}(s)$	-0.89
$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-1.68
$Mg^{2+}(aq) + 2e^- \rightarrow Mg(s)$	-2.36
$Na^+(aq) + e^- \rightarrow Na(s)$	-2.71
$Ca^{2+}(aq) + 2e^{-} \rightarrow Ca(s)$	-2.87
$Li^+(aq) + e^- \rightarrow Li(s)$	-3.04

-1

CHEM1612 - CHEMISTRY 1B (PHARMACY)

Useful formulas

Quantum Chemistry	Electrochemistry
$E = hv = hc/\lambda$	$\Delta G^{\circ} = -nFE^{\circ}$
$\lambda = h/mv$	Moles of $e^- = It/F$
$E = -Z^2 E_{\rm R}(1/n^2)$	$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$
$\Delta x \cdot \Delta(mv) \ge h/4\pi$	$= E^{\circ} - (RT/nF) \times \ln Q$
$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$	$E^{\circ} = (RT/nF) \times 2.303 \log K$
$T \lambda = 2.898 \times 10^6 \text{ K nm}$	$= (RT/nF) \times \ln K$
	$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$
Acids and Bases	Gas Laws
$pK_{\rm w} = pH + pOH = 14.00$	PV = nRT
$pK_{\rm w} = pK_{\rm a} + pK_{\rm b} = 14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$
$pH = pK_a + \log\{[A^-] / [HA]\}$	$E_{\rm k} = \frac{1}{2}mv^2$
Radioactivity	Kinetics
$t_{1/2} = \ln 2/\lambda$	$t_{1/2} = \ln 2/k$
$A = \lambda N$	$k = A e^{-Ea/RT}$
$\ln(N_0/N_t) = \lambda t$	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_{\rm o} - kt$
14 C age = 8033 ln(A_0/A_t) years	$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \Big(\frac{1}{T_1} - \frac{1}{T_2} \Big)$
Colligative Properties and Solutions	Thermodynamics and Equilibrium
$\Pi = cRT$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$\Delta G = \Delta G^{\circ} + RT \ln Q$
c = kp	$\Delta G^{\circ} = -RT \ln K$
$\Delta T_{\rm f} = K_{\rm f} m$	$\Delta_{\rm univ}S^\circ = R\ln K$
$\Delta T_{\rm b} = K_{\rm b} m$	$K_{\rm p} = K_{\rm c} \left(RT \right)^{\Delta n}$
Miscellaneous	Mathematics
$A = -\log \frac{I}{I_0}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
$A = \varepsilon c l$	$\ln x = 2.303 \log x$
$F = -A \frac{e^2}{N_A}$	Area of circle = πr^2
$2 \qquad 4\pi\varepsilon_0 r$	Surface area of sphere = $4\pi r^2$

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1																	2
HYDROGEN H																	HELIUM
1.008																	4.003
3	4											5	6	7	8	9	10
	BERYLLIUM											BORON	CARBON	NITROGEN	OXYGEN	FLUORINE	NEON
	Be											B	C	IN 14.01		r	INE 20.10
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
	12											13	14	15	16	17	18
Na	Μσ											ALOMINIUM	Si	P	S	CI	Arcon
22.99	24.31											26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
POTASSIUM	CALCIUM	SCANDIUM	TITANIUM	VANADIUM	CHROMIUM	MANGANESE	IRON	COBALT	NICKEL	COPPER	ZINC	GALLIUM	GERMANIUM	ARSENIC	SELENIUM	BROMINE	KRYPTON
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
RUBIDIUM Dh	STRONTIUM	VTTRIUM V	ZIRCONIUM 7r	NIOBIUM	MOLYBDENUM	TECHNETIUM	RUTHENIUM D11	RHODIUM Dh		SILVER		INDIUM	TIN Sn	ANTIMONY	Tellurium	IODINE	XENON
ND 85.47	87.62	₽ ₽ 01	01.22	02.01	05.04	IC [08 01]	101.07	102.01	106.4	107.87	112 40	114.82	118.60	121.75	127.60	126.00	AC 131.30
55	56	57 71	72	72.71	74	75	76	77	79	70	<u><u>90</u></u>	01	07	02	9A	05	96
CAESIUM	JU BARIUM	57-71	∠ HAFNIUM	1 J TANTALUM	/4 TUNGSTEN	/ J RHENIUM	/ O OSMIUM	/ / IRIDIUM	/ O PLATINUM	19 GOLD	OU MERCURY	O I THALLIUM	O∠ LEAD	O J BISMUTH	04 POLONIUM	O J ASTATINE	OU RADON
Cs	Ba		Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.91	137.34		178.49	180.95	183.85	186.2	190.2	192.22	195.09	196.97	200.59	204.37	207.2	208.98	[210.0]	[210.0]	[222.0]
87	88	89-103	104	105	106	107	108	109	110	111							
FRANCIUM	RADIUM		RUTHERFORDIUM	DUBNIUM	SEABORGIUM	BOHRIUM	HASSIUM	MEITNERIUM	DARMSTADTIUM	ROENTGENIUM							
			KI		Sg	BN	HS		DS	Kg							
[223.0]	[226.0]		[261]	[262]	[266]	[262]	[265]	[266]	[2/1]	[272]							

LANTHANOID S	57 Lanthanum La 138.91	58 cerium Ce 140.12	59 praseodymium Pr 140.91	60 _{NEODYMIUM} Nd 144.24	61 ^{ркометниим} Рт [144.9]	62 samarium Sm 150.4	63 _{еигорим} Eu 151.96	64 gadolinium Gd 157.25	65 ^{теквим} Тb 158.93	66 _{dysprosium} Dy 162.50	67 ноіміим Но 164.93	68 еквіим Er 167.26	69 _{тницим} Тт 168.93	70 ^{ytterbium} Yb 173.04	71 LUTETIUM Lu 174.97
ACTINOIDS	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	астіліци	^{тновіим}	protactinium	uranium	Neptunium	Plutonium	Americium	curium	berkellium	californium	EINSTEINIUM	^{fermium}	mendelevium	^{NOBELIUM}	LAWRENCIUM
	Ас	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	ES	Fm	Md	No	Lr
	[227.0]	232.04	[231.0]	238.03	[237.0]	[239.1]	[243.1]	[247.1]	[247.1]	[252.1]	[252.1]	[257.1]	[256.1]	[259.1]	[260.1]

PERIODIC TABLE OF THE ELEMENTS